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Abstract One of the fundamental goals in cell biology and proteomics is to identify the functions of proteins in the
context of compartments that organize them in the cellular environment. Knowledge of subcellular locations of proteins
can provide key hints for revealing their functions and understanding how they interact with each other in cellular
networking. Unfortunately, it is both time-consuming and expensive to determine the localization of an uncharacterized
protein in a living cell purely based on experiments.With the avalanche of newly found protein sequences emerging in the
post genomic era, we are facing a critical challenge, that is, how to develop an automated method to fast and reliably
identify their subcellular locations so as to be able to timely use them for basic research and drug discovery. In viewof this,
an ensemble classifier was developed by the approach of fusingmany basic individual classifiers through a voting system.
Each of these basic classifiers was trained in a different dimension of the amphiphilic pseudo amino acid composition
(Chou [2005] Bioinformatics 21: 10–19). As a demonstration, predictions were performed with the fusion classifier for
proteins among the following 14 localizations: (1) cell wall, (2) centriole, (3) chloroplast, (4) cytoplasm, (5) cytoskeleton,
(6) endoplasmic reticulum, (7) extracellular, (8) Golgi apparatus, (9) lysosome, (10) mitochondria, (11) nucleus, (12)
peroxisome, (13) plasma membrane, and (14) vacuole. The overall success rates thus obtained via the resubstitution test,
jackknife test, and independent dataset test were all significantly higher than those by the existing classifiers. It is
anticipated that the novel ensemble classifier may also become a very useful vehicle in classifying other attributes of
proteins according to their sequences, such as membrane protein type, enzyme family/sub-family, G-protein coupled
receptor (GPCR) type, and structural class, among many others. The fusion ensemble classifier will be available at
www.pami.sjtu.edu.cn/people/hbshen. J. Cell. Biochem. 99: 517–527, 2006. � 2006 Wiley-Liss, Inc.
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The human body hosts 1014 cells [Radford,
2003]. A cell contains approximately 109 protein
molecules that are located in many different
compartments, or organelles (Fig. 1). Cell mem-
brane functions as a boundary layer to contain
the cytoplasm,while cellwallprovidesprotection
from physical injury. The cytoplasm, a jelly-like
material, fills the cell and serves as a ‘‘molecular

soup’’ in which all of the cell’s organelles are
suspended. The function of the cytoplasm and
the organelles which sit in it, are critical to the
cell’s survival. The organelles are specialized to
carry out different tasks. For instance, function-
ing as the ‘‘brain’’ of eukaryotic cells, nucleus
houses the deoxyribonucleic acid (DNA), which
storesgenetic information.Chloroplast is thesite
of photosynthesis. Vacuole stores water and
various chemicals. Centriole forms spindle fibers
to separate chromosomes during cell division.
Endoplasmic reticulum transports chemicals
between cells and within cells. Golgi apparatus
modifies chemicals to make them functional.
Mitochondrion is the site of cellular respiration,
that is, the release of chemical energy from
food. Lysosome breaks large molecules into
small molecules by inserting amolecule of water
into the chemical bond. Peroxisome breaks down
excess fatty acids and hydrogen peroxide (H2O2),
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a potentially dangerous product of fatty-acid
oxidation. The cytoskeleton is responsible for
establishing cell shape, providing mechanical
strength, locomotion,and intracellular transport
of organelles. Most of these functions are
performed by the proteins in a cell. Accordingly,
the significance to identify the subcellular
localization of an uncharacterized protein has
become self-evident.

Although the information about protein sub-
cellular localization can be determined by
conducting various experiments, that is both
time-consuming and costly. Particularly, the
number of newly found protein sequences
has increased explosively in the post genomic
era. For instance, in 1986 Swiss-Prot [Bairoch
and Apweiler, 2000] contained only 3,939
protein sequence entries, but now the number
has jumped to 201,594 according to the version
48.6 released on December 6, 2005, implying
that the number of protein sequences has
increased by more than 50 times in less than
two decades. Facing such an overwhelming
number of newly found protein sequences, it

is both challenging and urgently needed to
develop an automated method for fast and
reliably annotating the subcellular attributes
of uncharacterized proteins. The knowledge
thus obtained can help us timely utilize these
newly found protein sequences for both basic
research and drug discovery [Chou, 2004].

Actually,many efforts have beenmade in this
regard [Nakashima and Nishikawa, 1994;
Cedano et al., 1997; Nakai and Horton, 1999;
Yuan, 1999; Chou and Elrod, 1999a,b; Nakai,
2000; Chou, 2001a; Chou and Cai, 2002; Pan
et al., 2003; Park andKanehisa, 2003; Zhou and
Doctor, 2003; Gao et al., 2005; Garg et al., 2005;
Shen and Chou, 2005b; Xiao et al., 2005c,d].
However, all these prediction methods were
established based on a single classifier derived
from a single training process regardless of
whether the operation was performed with the
covariant discriminant algorithm, or support
vector machine (SVM), or neural network.
Obviously, using a single classifier to deal with
complicated protein sequences with extreme
variation in both sequence order and lengthwill

Fig. 1. Schematic illustration to show the 14 subcellular locations of proteins: (1) cell wall, (2) centriole, (3)
chloroplast, (4) cytoplasm, (5) cytoskeleton, (6) endoplasmic reticulum, (7) extracellular, (8)Golgi apparatus,
(9) lysosome, (10) mitochondria, (11) nucleus, (12) peroxisome, (13) plasma membrane, and (14) vacuole.
Note that the cellwall, chloroplast, and vacuoleproteins exist only in aplant cell,while the centrioleproteins
only in an animal cell. Reproduced fromChou andCai [2003c]with permission. [Color figure can be viewed
in the online issue, which is available at www.interscience.wiley.com.]
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certainly limit the optimal result. The present
study was initiated in an attempt to introduce
the ensemble classifier by fusing many indivi-
dual classifiers. The advantage by doing so is in
reducing the variance caused by the peculia-
rities of a single training process so as to better
grasp the overall expressive feature for con-
ducting classification.

METHOD

In order to better reflect the sequence order
and length effect, rather than the conventional
amino acid composition, we adopt the pseudo
amino acid composition [Chou, 2001a, 2005a] to
represent the sample of a protein via a discrete
model. However, instead of a fixed dimension,
the pseudo amino acid composition adopted here
is with a series of various dimensions. Below, let
us first give a brief introduction about this.

Amphiphilic Pseudo Amino Acid Composition

Given a protein Pwith L amino acid residues

R1R2R3R4R5R6R7 . . .RL ð1Þ

whereR1 represents the residue at the sequence
position 1, R2 at position 2, and so forth, its
amphiphilic pseudo amino acid can be generally
formulated as (see Appendix A):

P ¼

p1

p2

..

.

p20

..

.

pL

2
666666664

3
777777775

ð2Þ

where the first 20 elements p1, p2, . . ., p20 are
associated with the 20 components in the
conventional amino acid composition (see
Appendix A), the elements from p20þ 1 to pL
are L correlation factors through which the
sequence-order effects can be indirectly
reflected (see Fig. A1 of Appendix A). When
L¼ 20, the pseudo amino acid composition is
reduced to the conventional amino acid compo-
sition. The elements in Equation 2 can be
easily calculated by following the procedures
given in Appendix A. Although the dimension
of pseudo amino acid composition (L) is
allowed to vary, it is limited by certain condi-
tions, depending on what kind of mode is
used. For the amphiphilic alternative-mode
adoptedhere,L� 20þ 2(L�1) (seeAppendixA).

Covariant Discriminant Classifier

Given a dataset, S, of N proteins classified
into M cellular attributes, we can generally
formulate it in terms of the union ofM subsets;
that is,

S ¼ S1 [ S2 [ S3 [ S4 [ S5 [ . . . [ SM ð3Þ

where each subset Sm (m¼ 1, 2, . . . ,M)
is composed of proteins with the same
cellular attribute and its size (the number
of proteins therein) is Nm. Obviously, we
have N ¼ N1 þN2 þ . . .þNM. According to
Equation 2, the kth protein in the subset Sm is
formulated by

Pk
m ¼

pk
m;1

pk
m;2

..

.

pk
m;20

..

.

pk
m;L

2
6666666664

3
7777777775

ð4Þ

The standard vector for the subset Sm is
defined by

�Pm ¼

�pm;1

�pm;2

..

.

�pm:20

..

.

�pm;L

2
666666664

3
777777775

ð5Þ

where

�pm;i ¼
1

Nm

XNm

k¼1

pk
m;i; ði ¼ 1; 2; . . . ;LÞ ð6Þ

Actually, �Pm as defined above can be deemed as
a standard protein for the subset Sm. The
similarity between proteins P (Eq. 2) and �Pm

(Eq. 5) is defined by the following covariant
discriminant function:

MðP; �PmÞ ¼ D2
MarðP; �PmÞ þ ln Cmj j;

ðm ¼ 1; 2; . . . ;MÞ ð7Þ

where

D2
MarðP; �PmÞ ¼ ðP� �PmÞTC�1

m ðP� �PmÞ ð8Þ

is the squared Mahalanobis distance [Mahala-
nobis, 1936; Pillai, 1985; Chou andZhang, 1994;
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Chou, 1995] between P and �Pm, T is the
transpose operator, and

Cm ¼

cm1;1 cm1;2 � � � cm1;L
cm2;1 cm2;2 � � � cm2;L

..

. ..
. . .

. ..
.

cmL;1 cmL;2 � � � cmL;L

2
6664

3
7775 ð9Þ

is the covariance matrix for the subset Sm and
its L�L elements are given by

cmi;j ¼
1

Nm � 1

XNm

k¼1

ðpk
m;i � �pm;iÞðpk

m;j � �pm;jÞ;

ði; j ¼ 1; 2; . . . ;LÞ ð10Þ

and jCmj is the determinant of the matrix Cm.
The smaller the value of MðP; �PmÞ, the greater
the similarity betweenP and �Pm. Therefore, the
classifier can be formulated as follows:

MðP; �PmÞ
¼ MinfMðP; �P1Þ; MðP; �P2Þ; . . . ;MðP; �PMÞg

ð11Þ

where the operator Min means taking the least
one among those in the brackets, and the
subscript m (¼1, 2, 3, . . . , orM) is the very subset
which the query protein P belongs to.

Fusion of Individual Classifiers

As we can see from Equations 7–11, the
classifier is closely associated with L, the
dimension of the pseudo amino acid composi-
tion. Therefore, even for exactly the same
training dataset, using different value of L will
yield different result. Suppose

fLg ¼ fL1; L2; . . . ;LOg ð12Þ

represents a set of possible numbers for the
dimensions of pseudo amino acid composition,
then we have a set of corresponding classifiers
as formulated by

fCDðLÞg ¼ fCDðL1Þ;CDðL2Þ; . . . ;CDðLOÞg
ð13Þ

where CD (L1) is the covariant discriminant
classifier trained in the L1 dimensional space,
CD (L2) is the one in the L2 dimensional space,
and so forth. The ensemble classifier formed by
fusing such a set of individual classifiers is
formulated by

C ¼ CDðL1Þ � CDðL2Þ � . . .� CDðLOÞ ð14Þ

where the symbol�denotes the fusing operator,
and C the ensemble classifier formed by fusing
CD (L1), CD (L2), . . ., and CD (LO) according to
the flowchart of Figure 2. In this study, O was
set at 22, and L1, L2,. . .,L22 at 20, 22,. . ., 62,
respectively; that is, Li ¼ 20þ ði� 1Þ � 2
with (i ¼ 1; 2; . . . ; 22), meaning that CD (L1)
was trained with the first 20 components of
Equation 2, CD (L2) trained with the first
22 components, and so forth.

The process of how the ensemble classifier C
works is as follows. Suppose the predicted
classification results for the query protein P by
O¼ 22 individual classifiers are Q1, Q2, . . .,QO,
respectively; that is,

fQ1;Q2; . . . ;QOg 2 fS1;S2; . . . ;SMg ð15Þ

and the voting score for the proteinP belonging
to the jth subset is defined by

Yj ¼
XO¼22

i¼1

wiDðQi;SjÞ; ðj ¼ 1; 2; . . . ;MÞ ð16Þ

where wi is the weighted factor, which can be
assigned according to some rule to optimize the
predicted results. For simplicity, let us just set
wi¼ 1 in this study. And the delta function in
Equation 16 is given by

DðQi;SjÞ ¼
1; if Qi 2 Sj

0; otherwise

�
ð17Þ

thus the query protein P is predicted belonging
to the classwithwhich its score ofEquation16 is
the highest; that is, suppose

Y� ¼ MaxfY1;Y2; . . . ;YMg ð18Þ
where the operator Max means taking the
maximum one among those in the brackets,

Fig. 2. Flowchart to show how the ensemble classifier C

(Eq. 14) is formed by fusing O individual classifiers: CD (L1), CD
(L2), . . . , and CD (LO), where O¼22 and L1, L2, . . . , L22 were
equal to 20, 22, . . . , 62, respectively, in this study. [Color figure
can be viewed in the online issue, which is available at www.
interscience.wiley.com.]
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and the subscript m is the very attribute predic-
ted for the query protein P. If there is a tie, the
query protein may not be uniquely determined
and will be randomly assigned among those
with a tie, but cases like that rarely occur.

RESULTS AND DISCUSSION

To demonstrate the power of the ensemble
classifier, the same training and testing data-
sets investigated by Chou and Cai [2003c] were
used. Each of the two datasets covers 14
subcellular locations. The training dataset
contains 3,799 proteins, of which (1) 71 are of
cell wall, (2) 65 of centriole, (3) 316 of chlor-
oplast, (4) 1,113 of cytoplasm, (5) 249 of
cytoskeleton, (6) 289 of endoplasmic reticulum,
(7) 393 of extracell, (8) 90 Golgi apparatus, (9)
123 of lysosome, (10) 389 of mitochondria, (11)
399 of nucleus, (12) 147 of peroxisome, (13) 69 of
plasma membrane, and (14) 86 of vacuole
(Fig. 1). The independent testing dataset con-
tains 4,498 proteins, of which (1) 35 are of cell
wall, (2) 4 of centriole, (3) 855 of chloroplast, (4)
186 of cytoplasm, (5) 131 of cytoskeleton, (6) 136
of endoplasmic reticulum, (7) 1,252 of extracell,
(8) 41 Golgi apparatus, (9) 57 of lysosome, (10)
762 of mitochondria, (11) 914 of nucleus, (12) 84
of peroxisome, (13) 24 of plasma membrane,
and (14) 17 of vacuole. The codes of these
proteins in the training and independent test-
ing datasets can be found at http://www.inter-
science.wiley.com/jpages/0730-2312/suppmat.
Compared with the two datasets, most of the
existing datasets cover much less locations.
For instance, the datasets investigated by

Nakashima and Nishikawa [1994] only covered
two locations, those by Cedano et al. [1997]
five locations, those byYuan [1999] three or four
locations, and those by Garg et al. [2005]
four locations.

The demonstration was conducted by the
three most typical approaches in statistical
prediction [Chou and Zhang, 1995]; that is, the
re-substitution test, independent dataset test,
and jackknife test, as reported below.

Re-Substitution Test

The so-called re-substitution test is an exam-
ination for the self-consistency of a classifier.
When the re-substitution test is performed for
the current study, the subcellular location of
each protein in the data set is in turn identified
using the rule parameters derived from the
same data set, the so-called training dataset.
The success rate thus obtained for predicting
the 14 subcellular locations of the 3,799proteins
is summarized in Table I, fromwhichwe can see
that 3,280 proteins were correctly predicted for
their subcellular locations, and only 519 pro-
teins incorrectly predicted. The overall success
rate was 86.4%. However, during the process of
the re-substitution test, the rule parameters
derived from the training data set include the
information of the query protein later plugged
back in the test. This will certainly under-
estimate the error and enhance the success
rate because the same proteins are used to
derive the rule parameters and to test them-
selves. Accordingly, the success rate thus
obtained represents an optimistic estimation
[Chou and Maggiora, 1998; Chou et al., 1998;

TABLE I. Overall Success Rates for the 14 Subcellular Locations (Fig. 1) of Proteins by
Different Classifiers and Test Methods

Classifier Input form

Test method

Resubstitution Jackknife
Independent

datset

ProtLock [Cedano et al., 1997] Amino acid composition
1;655

3;799
¼ 43:6%

1; 614

3; 799
¼ 42:5%

1;829

4;498
¼ 40:7%

Covariant discriminant [Chou and
Elrod, 1999b]

Amino acid composition
2;580

3;799
¼ 67:9%

2; 339

3; 799
¼ 61:6%

2;751

4;498
¼ 61:2%

Augmented covariant discriminant
[Chou, 2001a]

Pseudo amino acid compositiona 3;245

3;799
¼ 85:4%

2; 574

3; 799
¼ 67:8%

3; 246

4; 498
¼ 72:2%

Ensemble Pseudo amino acid compositionb 3;280

3;799
¼ 86:4%

2; 666

3; 799
¼ 70:2%

3; 331

4; 498
¼ 74:1%

aThe series-mode [Chou and Cai, 2003c] was used to calculate the pseudo amino acid composition with � ¼ 20þ �þ � ¼
20þ 13þ 13 ¼ 46.
bThe amphiphilic mode (Appendix A) was used to calculate the pseudo amino acid composition with f�g ¼ f�1;�2; . . . ;�22g ¼
f20; 22; . . . ; 62g (cf. Eq. 12).
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Cai, 2001; Zhou and Assa-Munt, 2001]. Never-
theless, the re-substitution test is absolutely
necessary because it reflects the self-consis-
tency of a predictor, especially for its algorithm
part. A prediction algorithm certainly cannot be
deemed as a good one if its self-consistency is
poor. In other words, the re-substitution test is
necessary but not sufficient for evaluating a
predictor. As a complement, a cross-validation
test for an independent testing data set is
needed because it can reflect the effectiveness
of a predictor in practical application. This is
important especially for checking the validity of
a training database: whether it contains suffi-
cient information to reflect all the important
features concerned so as to yield a high success
rate in application.

Independent Dataset Test

As a showcase for practical application,
predictions were also performed for the afore-
mentioned 4,498 proteins in the independent
dataset based on the rule-parameters derived
from the 3,799 proteins in the training dataset.
The overall success rate thus obtained for the
4,498 proteins is given in Table I as well.

Jackknife Test

As is well known, the independent data set
test, sub-sampling test, and jackknife testare the
three methods often used for cross-validation in
statistical prediction. Among these three, how-
ever, the jackknife test is deemed as the most
rigorous and objective one, as discussed by a
comprehensive review [Chou and Zhang, 1995].
Therefore, jackknife test has been used by more

andmore investigators [Zhou, 1998; Yuan, 1999;
Feng, 2001; Hua and Sun, 2001; Zhou and Assa-
Munt, 2001; Chou, 2001b; Luo et al., 2002; Pan
et al., 2003; Zhou and Doctor, 2003; Liu et al.,
2005b; Wang et al., 2005; Shen and Chou,
2005a,b; Shen et al., 2005a,b; Xiao et al.,
2005a,c] in examining the power of various
predictors. During jackknifing, each protein in
the dataset is in turn singled out as a tested
protein and all the rule-parameters are calcu-
lated based on the remaining proteins. In other
words, the subcellular location of each protein is
identified by the rule parameters derived using
all the other proteins except the one being
identified.During the process of jackknifing both
the training data set and testing data set are
actually open, and a protein will in turn move
from one to the other. The overall jackknife
success rate thus obtained for the 3,799 proteins
in the training dataset is also given in Table I.

Furthermore, to facilitate comparison, listed
in Table I are also the results predicted by
various other methods on the same datasets.
Meanwhile, to show the advantage of the
ensemble classifier, the overall jackknife suc-
cess rate obtained by each of the individual
classifiers is listed in Table II. From the two
tables, the following can be observed. (1) The
current ensemble classifier remarkably out-
performed the other classifiers in all the three
test methods, indicating that the ensemble
classifier is indeed a very powerful one. (2)
Among the three test methods, the success rate
obtained by re-substitution is the highest
(86.4%), that by the independent dataset test
is the next (74.1%), and that by the jackknife
test is the least (70.2%). This is fully consistent

TABLE II. The Jackknife Success Rate Obtained by Each of the 22
Individual Classifiers (cf. Eqs. 13 and 14)

Classifiera Dimensionb Success ratec Classifiera Dimensionb Success ratec

CD (L1) 20 61.6% CD (L12) 42 67.9%
CD (L2) 22 63.8% CD (L13) 44 68.0%
CD (L3) 24 65.5% CD (L14) 46 67.9%
CD (L4) 26 66.1% CD (L15) 48 68.1%
CD (L5) 28 67.4% CD (L16) 50 67.9%
CD (L6) 30 67.9% CD (L17) 52 67.7%
CD (L7) 32 68.0% CD (L18) 54 67.7%
CD (L8) 34 67.8% CD (L19) 56 67.3%
CD (L9) 36 67.9% CD (L20) 58 66.8%
CD (L10) 38 67.9% CD (L21) 60 66.5%
CD (L11) 40 68.0% CD (L22) 62 66.7%

aIndividual basic classifier CD (Li) (i¼ 1, 2, . . . , O) (see Eq. 13).
bThe dimension of the amphiphilic pseudo amino acid composition considered here was given by
Li¼ [20þ 2(i� 1)] (i¼1, 2, . . . , 22), on which each of the individual classifier CD (Li) was operated.
cThe overall jackknife success rate was derived from the training dataset of 3,799 proteins taken from
[Chou and Cai, 2003c].

522 Chou and Shen



with what was expected because the jackknife
test is the most stringent examination method
among these three. A similar trend can also
be seen for the results by the other classifiers.
(3) The overall jackknife success rate (70.2%)
by the ensemble classifier (Table I) is higher
than any of the 22 jackknife success rates
obtained by each of the 22 individual classifiers
(Table II), clearly indicating that the ensemble
classifier formed by fusing many basic classi-
fiers is more powerful than each of their
individuals.
The goal of this study is not to determine the

possible upper limit of the success rate in
predicting protein subcellular location, but to
propose a novel approach by fusing many
individual classifiers each based on different
dimensions of pseudo amino acid compositions
that might help to open a new avenue to further
increase our ability to deal with this very
complicated and difficult problem. It should
be realized that it is too premature to
construct a complete or quasi-complete training
dataset based on the knowledge available so far.
Without a complete or quasi-complete training
dataset, any attempt to determine such an
upper limit would be unjustified, and the result
thus obtained might be misleading no matter
how powerful the classifier is.
It should be pointed out that some proteins

may occur in several different subcellular
locations, that is, bear the feature of ‘‘multi-
plex locations.’’ Also, some proteins are
known to be shuttled from one subcellular
compartment to another, and back again. For
this kind of multiplex locations case or
dynamic case, a different approach to train
the predictor and count the success rates is
needed as elaborated in [Cai and Chou, 2004;
Chou and Cai, 2005a].

CONCLUSION

Classifiers that are established on the
pseudo amino acid composition can incorporate
a considerable amount of sequence order
effects of proteins, and hence perform much
better in predicting their subcellular locations
than those based on the conventional amino
acid composition. However, there are many
choices in selecting thedimension of thepseudo
amino acid composition, and each different
choice may lead to a different outcome. It is
both time-consuming and tedious to determine
the optimal one. The current ensemble classi-

fier formed by fusing many such single classi-
fiers can automatically solve the problem,
leading to much higher success prediction
rates. The fusion ensemble classifier may also
be used to predict many other attributes of
proteins according to their sequences, and
become a powerful tool in proteomics and
bioinformatics.
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Appendix A

Amphiphilic Pseudo Amino Acid Composition

For reader’s convenience, here let us give a
brief introduction of the amphiphilic pseudo
amino acid composition. For more information
about various modes of pseudo amino acid
composition and their applications, refer to
[Chou, 2001a, 2005a,b; Cai and Chou, 2003,
2005, 2006; Panet al., 2003;ChouandCai, 2005,
2006, 2004, 2005b, 2006a,b; Wang et al., 2004,
2005; Cai et al., 2005; Gao et al., 2005; Liu et al.,
2005a; Shen and Chou, 2005a,b; Shen et al.,
2005a; Xiao et al., 2005b,c, 2006a,b].

For a protein with a sequence generally
formulated by Equation 1 of the text, its amino
acid composition is given by [Chou and Zhang,
1994; Chou, 1995]

PAA ¼

f1
f2
..
.

f20

2
6664

3
7775 ðA1Þ

where f1 is the occurrence frequency of amino
acid A in the protein, f2 that of amino acidC, and
so forth. Here, without loss of generality, the
single codes of the 20 native amino acids are
used according to their alphabetical order. Also,
the 20 occurrence frequencies are normalized to
100.Aswe can see fromEquationA1, if a protein
is represented by such a set of discrete numbers,
all its sequence information would be lost. To
keep its representationwith adiscretemode but
without completely losing its sequence-order
information, we can define a pseudo amino acid
composition by merging a series of sequence-
order-correlated factors into the conventional
amino acid composition. As is well known, the
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hydrophobicity and hydrophilicity play a very
important role to the folding of a protein as well
as its microenvironment and interior packing
(see, e.g., [Chou et al., 1984, 1986, 1990]). For
instance, many helices in proteins are amphi-
philic that is formed by the hydrophobic and
hydrophilic amino acids according to a special
order along the helix chain, as illustrated by the
‘‘wenxiang’’ diagram [Chou et al., 1997]. There-
fore, these two indicesmay be one of the optimal
choices to reflect the sequence order effects. In
view of this, the sequence-order effects can be
indirectly and partially, but quite effectively,
reflected through the following equations
(see Fig. A1):

t1 ¼ 1
L�1

PL�1

i¼1

H1
i;iþ1

t2 ¼ 1
L�1

PL�1

i¼1

H2
i;iþ1

t3 ¼ 1
L�2

PL�2

i¼1

H1
i;iþ2

t4 ¼ 1
L�2

PL�2

i¼1

H2
i;iþ2; ðl < LÞ

� � � � � � � � � � � � � � � � � � � � �
t2l�1 ¼ 1

L�l

PL�l

i¼1

H1
i;iþl

t2l ¼ 1
L�l

PL�l

i¼1

H2
i;iþl

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

ðA2Þ
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Fig. A1. A schematic drawing to show the amphiphilic correlation along a protein chain, where the values
ofHi,j

1 andHi,j
2 are given by EquationsA3 andA4 and Table AI. The correlation via hydrophobicity is shown

in red, while the correlation via hydrophilicity in blue. Panel a1/a2 reflects the coupling mode between all
the most contiguous residues, panel b1/b2 that between all the secondmost contiguous residues, and panel
c1/c2 that between all the third most contiguous residues. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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where Hi, j
1 and Hi, j

2 are the hydrophobicity
and hydrophilicity correlation functions
given by

H1
i;j ¼ 100w½h1ðRiÞh1ðRjÞ�

H2
i;j ¼ 100w½h2ðRiÞh2ðRjÞ�

(
ðA3Þ

where h1(Ri) and h2(Ri) are, respectively, the
hydrophobicity and hydrophilicity values for
the ith(ith¼ 1,2, . . . ,L) amino acid in Equation
1, and w is the weight factor. In the current
study, we chosew¼ 0.5 to make the data within
the range easier to be handled (w can be of
course assigned with other values, but this
would not have a big impact to the final results).
In Equation A2 �1 and �2 are called the 1st-tier
correlation factors that reflect the sequence-
order correlation between all the most contig-
uous residues along a protein chain through
hydrophobicity and hydrophilicity, respectively
[Fig. A1 (a1,a2)], t3 and t4 are the corresponding
second-tier correlation factors that reflect
the sequence-order correlation between all the
second most contiguous residues [Fig. A1
(b1,b2)], and so forth. Note that before sub-
stituting the values of hydrophobicity into
Equation A3, they were all subjected to a
standard conversion as described by the follow-
ing equation:

h1ðRiÞ ¼
h0
1ðRiÞ � h0

1

� �
SDðh0

1Þ

h2ðRiÞ ¼
h0
2ðRiÞ � h0

2

� �
SDðh0

2Þ

8>>><
>>>:

ðA4Þ

where the symbols h0
1ðRiÞ and h0

2ðRiÞ represent
the original hydrophobicity value [Tanford,
1962] and hydrophilicity value [Hopp and
Woods, 1981] for amino acid Ri, respectively
(Table AI); h0

1

� �
and h0

2

� �
their means over

20 native amino acids; SD(h0
1) and SD(h0

2) their
standard deviations. The converted hydropho-
bicity and hydrophilicity values obtained by
Equation A4 will have a zero mean value over
the 20 native amino acids, and will remain
unchanged if going through the same conver-
sion procedure again. After merging the
sequence-order-correlated factors from Equa-
tion A2 into the classical 20D (dimensional)
amino acid composition (Eq. A1), we obtain a
pseudo amino acid composition with 20þ 2l
components. In other words, the representation
for the protein sequence of Equation 1 is now
formulated as

PPseAA ¼

f1
f2

..

.

f20
�1
�2
..
.

�2l

2
666666666664

3
777777777775
; ðA5Þ

which can be easily converted to Equation 2 by
performing a normalization procedure accord-
ing to the following equation:

pu ¼

fuX20
i¼1

fi þ
X2l
j¼1

tj

; ð1 � u � 20Þ

tuX20
i¼1

fi þ
X2l
j¼1

tj

; ð20þ 1 � u � 20þ 2lÞ

20þ 2l ¼ L: ðA6Þ

8>>>>>>>>>><
>>>>>>>>>>:

For reader’s convenience, the L¼ 20þ
21� 2¼ 62 components of PPseAA in Equation
A5 for each of the proteins in the training and
testing datasets studied here are given in the
Online Supplementary Materials A and B,
respectively, from which the user can easily
generate the normalized pseudo amino
acid composition P of Equation 2 with any
dimension of L� 62 through Equation A6. For

TABLE AI. The Amino Acid Parameters
Used for Deriving the Amphiphilic Pseudo

Amino Acid Components (cf. Eq. A4)

Code Hydrophobicitya h1
0 Hydrophilicityb h2

0

A 0.62 �0.5
C 0.29 �1.0
D �0.90 3.0
E �0.74 3.0
F 1.19 �2.5
G 0.48 0.0
H �0.40 �0.5
I 1.38 �1.8
K �1.50 3.0
L 1.06 �1.8
M 0.64 �1.3
N �0.78 2.0
P 0.12 0.0
Q �0.85 0.2
R �2.53 3.0
S �0.18 0.3
T �0.05 �0.4
V 1.08 �1.5
W 0.81 �3.4
Y 0.26 �2.3

aThe hydrophobicity values were taken from [Tanford, 1962].
bThe hydrophilicity values were taken from [Hopp and Woods,
1981].

Protein Subcellular Location Prediction 525



instance, to generate the P with L¼ 20, just
read the first 20 data for each protein in the
Online Supplementary Materials followed by
substituting them intoEquationA6; to generate
the P with L¼ 22, just read the first 22 data
followed by the same procedure; and so forth.
Actually, suppose the length of the shortest
protein sequence studied here is Lmin, by
following the above procedures one can
always generate the P with a dimension of
L � ½20þ 2ðLmin � 1Þ�(see Eq. A2 and Fig. A1).
It should be pointed out that, according to the
definition of the classical amino acid composi-
tion, all its components must be �0; it is not
always true, however, for the pseudo amino acid
composition: the components derived from the
sequence correlation factors (cf. Eq. A2) may
also be<0. But this will not affect the existence
of Equations 7 and 8 as proved in Appendix A of
[Chou, 2005b].
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